
APD test board V.2 operation
Leon Mualem --University of Minnesota
8/27/2005 http://www.hep.umn.edu/~mualem/oa/apd_v2/APD_V2.doc

Conceptual design
The APD test board uses a Fermilab MASDA1 ASIC to integrate AC coupled signals
from a Hamamatsu 32 pixel APD array model S8550. The MASDA-X chip performs
dual correlated (before/after) sampling of the inputs. There are
2 sets of sample capacitors for each channel, referred to as A
and B. Only one set is used in the prototype board since the 2
sets will have slightly different offsets and slightly different
gains. The MASDA has 128 channels, only 32 of which are
used and readout. The Xilinx CPLD supplies integrator reset,
integration timing, readout logic, and readout clock timing
signals as multiples of the externally supplied clock, which
runs at 1MHz nominally. The digitized data are sent out for
every trigger and every channel on the data interface lines.

APD readout board design

Figure 2 APD readout board version 2 with major components indicated

In production the MASDA is covered to protect the delicate wire bonds underneath.
High voltage (~400V) for the APD arrays are supplied via the lemo connectors. The
voltage for the version 2 board described and shown here is POSITIVE. There are 2

Figure 1
Hamamatsu S8550

 APD
 (Back Side)

 MASDA

ADC

CPLD

independent diodes in each S8550 package which may require different bias voltage to
run at the intended gain. The power connector J1, the upper LEMO connector in Figure
2, supplies HV power to the even channels, 0-30, and J7 supplies power to the odd
channels, 1-31. In addition Figure 2 shows the layout of the board and the major
components, the APD itself is mounted on
the back side, the MASDA, the ADC, and
the CPLD. On the right hand side of the
figure is the main interface connector, a 34
pin header. This is used to supply the
clock signal (1MHz TTL compatible),
power (+5V) and a trigger signal as inputs.
The output data bits are also on this
connector as well as a signal indicating the
start of the integration time. All the pins at
the edge of the board are connected to the
ground plane. The remaining 17 pins are
arranged as in Table 0.1.
The clock and power signals are
electrically connected to 2 pin headers J2
and J6 respectively. This provides the
flexibility of driving the board with signals
from the interface cable or separately.

Additional interface
connectors
There are several additional interface
connectors on the board that can be programmed to provide additional configuration
control or output signals if needed by simply reprogramming the CPLD. The
programming connector is TS1, the single row header located at the top of the board in
Figure 2, pin 1 is located at the left hand side. Programming can be done with a
Windows PC with a PC Parallel Port and a programming cable from Xilinx (costs about
$100). The programming takes only seconds using free programming software from
Xilinx. The connector pinout is arranged as indicated in Table 0.2. Headers J3 and J5
can be programmed as configuration jumpers or additional outputs if needed. They are
programmed as in Table 0.3 and Table 0.4.
JTAG Pin JTAG signal

1 TCK
2 TDI
3 TDO
4 TMS
5 VCC
6 GND

Table 0.2 TS1 header signals

Signal Line Signal
1 Clock (1MHz TTL)
3 POR
5 TRIG
7 Data Valid
9 D0
11 D1
13 D2
15 D3
17 D4
19 D5
21 D6
23 D7
25 D8
27 D9
29 SBEF
31 Spare
33 Power (+5V)

2,4,6,…,32,34 GND

Table 0.1J4 header signals

The signals on the J3 connector are output signals for monitoring board operation.

J3 Pin Signal
1 ABSEL
3 SBEF
5 RC2
7 RC3
9 COMB_CLK_UNUSED
11 COMB_TRIG
13 COMB_POR
15 COMB_CLK

2,4,…14,16 GND

Table 0.3 J3 signals (the upper/smaller one)

The signals on the J5 header are both output and inputs to the CPLD. The first 3 signals
are again for monitoring of the board operation. The other signals are inputs to change
the operation of the MASDA if needed. The BW_INP_X pins are used to control the
bandwidth (risetime) of the integator output. The default is the fastest, at 360-500ns.
Jumpering these pins will decrease the bandwidth, and increase the risetime. The
GAIN_INP_X signals can be used to change the gain of the MASDA. The default is the
second highest gain. Currently jumpering the pins will lower the gain, by adding binary
weighted capacitors to the integrator feedback. The first will make the gain about 1/3,
the second about 1/5, and the third about 1/9. The other signals, EXT1 and 2 are used to
control the phase of readout for the MASDA, since we only use ¼ of the channels it has
to skip them on readout, and these pins are used to adjust it in case the bonding is
different for different boards somehow. (Should come properly jumpered, with only
EXT1 jumpered. Don’t remove it.)

J5 Pin Signal Input/Output
1 ACQ Output
3 READY Output
5 DONE Output
7 NC --
9 BW_INP_3 Input
11 BW_INP_2 Input
13 BW_INP_1 Input
15 GAIN_INP_3 Input
17 GAIN_INP_2 Input
19 GAIN_INP_1 Input
21 EXT2 Input
23 EXT1 Input

2,4,…,22,24 GND --

Table 0.4 J5 signals (the bigger/lower one)

APD references and description

The Hamamatsu S85502 APD is a package of 2 electrically independent APD arrays of
2x8 pixels. The pixel size is 1.6mm square and the pixel pitch is 2.3mm in both
directions. The spacing between the two arrays is 2.6mm to allow for the ceramic
insulator between the 2 arrays. The array is arranged as a common cathode configuration
and requires a bias voltage of approximately 400V. The actual specification for each
APD will come from Hamamatsu and from tests during the checkout procedure for the
board with the mounted APD.

The back side of the APD has been potted with RTV to inhibit discharge which may
happen if there is some contamination or moisture allowed to form. This has happened in
practice, and the RTV should prevent it from happening in the future. The result is the
death of at least the one diode array that sparks.

Figure 3 Pixel arrangement and dimensions from Hamamatsu Specifications Sheet
for Si APD S8550.

Pixel Number Readout Channel Pixel Number Readout Channel

A1 0 A3 1
A2 2 A4 3
B1 4 B3 5
B2 6 B4 7
C1 8 C3 9
C2 10 C4 11
D1 12 D3 13
D2 14 D4 15

E1 16 E3 17
E2 18 E4 19
F1 20 F3 21
F2 24 F4 23
G1 22 G3 25
G2 26 G4 27
H1 28 H3 29
H2 30 H4 31

Table 0.5

Mechanical Design/Layout
For anyone interested in physical interface to the board the dimensions and hole sizes etc.
for mounting are found in the gerber files that are posted here:
http://www.hep.umn.edu/~mualem/oa/gerbers/APD2-13-04PM.zip
The 8 large mounting holes near the APD and at the other end are 0.125”, and are located
relative to the lower left corner of the board (oriented so you can read the designer’s
name.) are as follows:
X location (mils) Y location (mils)
200 800
200 2200
600 800
600 2200
3250 250
3250 2750
4750 250
4750 2750

Table 0.6 Large mounting hole locations, the first 4 are near the APD for mounting
the cooler, and the next four are at the other end of the board for mounting to a box.

Figure 4 Layout sketch of 1.2mm fiber cookie with dimension in mm.

Board operation
The readout board has two operational states, an acquire mode and a readout mode. The
acquire mode clocks the IRST, SBEF, SAFT, and ABSEL signals to the MASDA. It first
resets the integrator to VREF, then it holds the before sample on a capacitor on the falling
edge of SBEF, this starts the integration time. The after sample is then held when SAFT
goes low ending the integration time and the acquisition of this sample. The integral is
then the difference between the before and after samples. This is dual-correlated
sampling. If the board did not receive a trigger (rising edge on J4 pin 3) before SAFT
goes low another acquire sequence will be initiated. This will continue until a trigger is
received and the CPLD switches to readout mode.

Figure 5 MASDA acquire clock timing as programmed.

IRST is held for 2 clock cycles, when the minimum recommended is 1us. The 2 clock
cycle setting is conservative, in order to minimize noise. The long time after IRST goes
low before SBEF goes low is to allow more time for the sample capacitors to settle. The
bandwidth is halved since the SBEF and SAFT capacitors are both connected during this
time. The minimum recommended is about 3 us in this configuration. The 9 clock cycles
is again conservative in order to minimize the noise. The next 2 clock cycles after SBEF

goes low are the actual integration time. Since the risetime of the output stage of the
integrator is about 500ns the actual live time is less than 2us. In order to fully collect the
signal the signal window (that should be used for coincidence triggering) starts when
SBEF goes low and last 500ns. The SBEF signal is on the interface connector for just
this purpose. If the coincidence window is longer the amount of charge collected will
depend on the actual time of the signal, so the variation will be greater.

In readout mode the acquired signals are multiplexed onto the output bus of the MASDA
where they are digitized by the 10-bit ADC three times. The CPLD adds the data from
these samples together to average the signal. This averaging reduces the noise by about
5% and increases the effective LSB size, or increases the number of bits to almost 12.
Each sample takes 16us to read out, and the 12 bits are read out as 2 6 bit words so that
the entire board can be read out in little more than 1ms. The data are sent out
asynchronously to the PC, so the board will function even without a PC reading the data.

Figure 6 Readout clock sequence showing 2 full data samples.

Data acquisition programs
There are two data acquisition programs that have been tested to work with the board.
The first is programmed in NI LabWindows and provides a GUI to drive the board, select
the number of samples, output files etc. The limitation of this program is that it must be
run with one of the older consumer versions of windows, 95/98/Me. This is due to
restrictions against direct port access in NT based systems. This slows down the access
too much and the data acquisition may become unreliable. It might work for some
systems and not for others, therefore I recommend using a computer with the previous
operating systems for reliable operation. There is also a program written in C++ that can
interface with root and run under Linux. At the moment it can acquire data correctly, but
does not have a nice interface. It also requires that you be able to perform direct port
reads and disable interrupts, so it must at least be SUID root. (If you don’t understand
this, go with the windows.)

The port that is used for data acquisition is a standard parallel port set to bi-directional
(BYTE) mode, which allows reading of 8 bits at a time. It should work with just about
any parallel port setting, but is somewhat more likely to work if it is set to ECP in the
BIOS. This enables the program to set the mode to BYTE correctly. The speed of the
computer is essentially irrelevant. I have had it working reliably on 200MHz Pentium up
to 800MHz P-III with essentially no difference in acquire speed. (Since the parallel port
is so slow, it would probably work on a PC-XT.)

In order to acquire data the PC takes control of the TRIG line on the interface connector
with the parallel port –STROBE line. This allows the PC to control when acquisition
may occur. This line can either be directly connected to the TRIG line, or broken out to
use in triggering logic; this mode will be covered later. The PC polls the DataValid line
from the DAQ board. This line is connected to pin 12 of the parallel port, the -PE
(printer error) bit, and is read by reading the status byte of the printer port, which is
usually 0x379. The data bits 0-7 from the DAQ board are connected to data bits 0-7 on
the parallel port cable. Data bits 8 and 9 from the DAQ board go to –ACK and –Busy
respectively. The bits 8 and 9 are vestigial, and could be used if needed, but do not
currently convey any information. The two 6 bit data words are sent on the bits 0-5 lines,
and bits 6 and 7 indicate the phase of the data: Bit 6 indicates whether the 6 bits are Most
or Least significant bits, and Bit 7 indicates whether it is the Q or I mode channel of the
ADC that digitized the signal. The DataValid line indicates, as expected that the data on
the data bus is valid. This signal goes high one clock cycle after the data are presented,
which is more than enough time for the bits to settle. The entire readout cycle is simply
watching DV go high and low and recording the data. Since the DAQ program knows
what to expect next it is able to detect a missed sample. When this happens the entire set
is simply discarded and a new acquire/readout cycle is started. This means you only get
complete and correct information. If anything is amiss during a sample it is discarded.

One set of 6 bits is read in a minimum of 3 reads of the port. The first is when the polling
sees that -DV has gone low the second is when it reads the 8 bits from the port, and the
third is another read to the –DV bit to ensure that it is still low, and that the data did not
become invalid during our read. A typical port read time is 1.2-1.6us under Linux or the
consumer windows versions (98 or ME). With the data persisting for 15us there is plenty
of time to perform these three reads. Under NT the typical port read times are 4-6us,
which does not allow enough time to perform all 3 reads reliably. It is possible to
lengthen the DV time, but then you run into another problem on WinNT, that you can not
disable interrupts and may be interrupted during your readout cycle which leads to a
different sort of unreliability. It may be possible to provide the slow readout as a jumper
selection, but it would probably be a last resort, and it would better if everyone simply
uses a “reliable” OS.

LabWindows APDdaq

I intend to keep a recent and functioning copy of the DAQ software in
http://www.hep.umn.edu/~mualem/oa/apd_v2/apddaq/.

Data acquisition is controlled by a simple program called apddaq.exe. The control panel
for this is shown in Figure 7. The buttons on the left hand column provide some
diagnostics. They are vestigial, and will probably be removed at some point, though they
may provide some useful diagnostics if there are problems. The “Quit” button on the
bottom is functional, and will quit the program at any time. The selector in the middle,
“Board type” selects between different hardware versions of the APD board. It defaults

to “V2 avg”, which is appropriate for most users, as there is only one V1 board in
existence. The selection is available so that the program will be identical in all locations
to minimize debugging problems. The “Samples to acquire” control sets the number of
DAQ cycles that will be attempted. On each cycle all 64 channels will be read. A cycle
is only counted if all channels read out successfully. If not, the program will discard any
acquired data and try to again to get a valid set of samples. The “Go” button starts the
data acquisition, which will continue until reaching the selected number of samples. The
“STOP” button will stop the data acquisition essentially immediate. The “Output File”
control sets the name of a file that the acquired data will be dumped into. The target file
is emptied on each data acquisition if it exists, if it does not exist it will be created and
filled. Clicking on the textbox will open a dialog to choose a file, from an explorer type
navigation box, or simply type the file name. For use with the analysis programs, it
might be useful to take some pedestal data as a “.ped” file. If you take light injection,
and name the pedestal file filename.ped, and the light injection file as filename.li, it can
be very useful.

The controls near the bottom right corner serve as progress indicators. The “Samples
acquired” progress bar will grow as samples are acquired, and the text box will show the
actual number of samples acquired in steps determined by the “Increment” control. If
you are reading noise or light injection, an increment of 100 is appropriate. The DAQ
proceeds at about 100Hz, so it is easy to tell that it is still alive, and does not consume a
lot of resources in updating the display. If you are acquiring cosmic ray data, which will
come in much slower (depending on size of detector, triggering you choose, etc.) it might
be appropriate to set the increment all the way down to 1.

Figure 7 LabWindows DAQ panel.

When the program starts a couple of status lines will be printed in a stdout window. This
might include a warning about non-ECP modes which is probably innocuous, and it will

report the time to 1 million port reads. This number should be about 1-2us/read. If it is
substantially longer, there is something rather strange, and DAQ may be unreliable.

Upon completion of the desired number of samples a report will be printed to stdout.
This will contain the mean and RMS for each channel, and the average RMS and RMS of
the RMS values for each entire array. There are 2 arrays on the board, one reads out on
the even channels, and the other the odd channels. These are reported separately since it
is possible that you might run one array and not the other with the proper bias voltage.

Linux APDdaq
Currently out of date, so unavailable. Let me know if this is a deeply desired feature.

DAQ Hardware
The current DAQ hardware consists of one cable that connects to the APD board on one
end and the PC parallel port on the other through an “RS-232 jumper box”3. The jumper
box really has nothing to do with RS-232, it is simply a configurable DB-25 male to DB-
25 female adapter where all connections are made via jumper wires. This is how the
APD board signals are connected to the appropriate parallel port signals. The
connections are as shown in Table 0.7.

Signal Line APD Board Signal Parallel Port Signal Parallel Port Pin
1 Clock (1MHz TTL)

3 POR
5 TRIG –STROBE 1
7 Data Valid PE 12
9 D0 D0 2
11 D1 D1 3
13 D2 D2 4
15 D3 D3 5
17 D4 D4 6
19 D5 D5 7
21 D6 D6 8
23 D7 D7 9
25 D8 –ACK 10
27 D9 –BUSY 11
29 SBEF
31 Spare
33 Power (+5V)

2,4,6,…,32,34 GND GND 18-25

Table 0.7 APD readout board signals and their connections to parallel port lines.

External Triggering
In this connector the –STROBE line is actually not directly connected, the TRIG line and
–STROBE signals actually come out on LEMO connectors. If they are joined with a
LEMO barrel then the board will switch to readout mode and send the data out after
completion of the next acquire sequence that completes after TRIG goes high. If they are
disconnected then it can be used for external coincidence triggering. The way this works
is to use the –STROBE TTL signal from the PC to indicate that the PC is ready to read
out the data. The other part of an external trigger is determined by the SBEF signal on
the data cable. The integration window starts when SBEF goes low. The total
integration time is 2 clock periods. Due to the risetime of the output of the integrator in
the MASDA it takes 1.5us to collect the entire charge. Therefore the coincidence gate for
a valid signal should be the AND of the –STROBE line and a gate pulse that can be
generated when SBEF goes low and lasts 2*Tclock-1.5us. For example if your clock is
running at 1MHz Tclock is 1us, so the gate is 0.5us long starting when SBEF goes low. If
there is a coincidence, then the external logic should generate a high TTL level on the
TRIG line to indicate there was a valid coincidence trigger and that the data should be
read out. This signal must come before 4 clock periods have elapsed from the time SBEF
goes low. This is typically 3.5us from the integration gate, which is quite a long time for
typical logic modules, so should not be a problem. If there was not a TRIG high signal
the APD board will start another acquire sequence immediately.

In Out

Out

Out

623B QuadDisc

In Out

Out

Out

623B QuadDisc

In
Out
Out

Out
Out

Out

Out

In

622 QuadCoinc

In
Out
Out

Out
Out

Out

Out

In

622 QuadCoinc

In
Out
Out

Out
Out

Out

Out

In

622 QuadCoinc

Common Inhibit

SBEF
NIM-TTLTTL-NIM TTL-NIM

STROBE
TTL-NIM

NIM-TTL
TRIG

External coincidence gate logic
for triggering APD readout board

250ns

500ns

1000ns

100ns

100ns

1000ns(TTL)

Figure 8 Trigger logic used for external coincidence logic. Gate widths are
approximate. Modules shown are all standard LeCroy NIM modules, the buffers
and inverters are all LRS688 level translators. The triple buffering of SBEF is
necessary to debounce a somewhat noisy signal, only one may be necessary.

The typical way generate the gates and perform this logical comparison is by using
standard NIM logic modules. It is particularly useful to have gate generators,
discriminators (for external trigger counters), coincidence generators, and TTL-NIM
level translators for interfacing the two standards. These can be loaned from FNAL
PREP. The scheme that I used is shown in Figure 8.

CPLD program
Updated CPLD information can be found at
http://www.hep.umn.edu/~mualem/oa/apd_v2. This contains a directory call
CPLD_APR13 that contains the actual programs/components used to build the
programming file for the CPLD. There are hundreds of files here, as this is a copy of the
entire directory. Most of the files are of no real use to you, but there are a few
interesting ones. The most interesting ones being ACQ_CLKS.vhd, which show the
states/timing for the acquire sequence. Also, readout_control.vhd shows the sequence for
the digitization and readout sequence. There is also a postscript of the figure with the
program schematic, which might print more legibly as top.sch.ps.

Figure 9 Schematic of operation of Xilinx CPLD.

Analysis programs
I have written a few Root macros that are useful for analyzing the data files. They should
be found at http://www.hep.umn.edu/~mualem/oa/apd_v2/macros/.

The data file format is simply channel number and ADC value for all 32 channels for
each acquired sample. This makes it rather simple to write your own analysis program in
whatever language and using whatever OS you want. I chose to use Root, so that it
would be portable and not require a compiler. (You can use ACLIC on them if you
want.) The first program is called pedonly.C, (you might need pedonly.h also for
ACLIC) The program will take a single filename and make an ntuple of the data,
compute pedestals for each channel, and fill an ntuple with pedestal and common mode
noise subtracted data. The common mode subtraction reduces the noise about 10%. It
should be a valid operation since in general the occupancy of the detector will be very
low, so it is reasonable to use some fraction of the lowest data on each array to do
common mode subtraction, and thus reduce the noise. Although the common mode noise
is correlated between the two arrays, it is calculated separately for each array in case only
one is operating in a given file.

Running the program on a pedestal data file called mydata.ped would look like this:
root –l ‘pedonly.C(“mydata.ped”)’
This will produce the two ntuples mentioned above using the data from mydata.ped, and
two histograms, one for each array, of the pedestal and common mode noise subtracted
data. It will also fit the histograms with a Gaussian which will indicate the noise level as
sigma, reported in stdout, and plotted on the histograms.

There is another program for displaying light injection data. It works best if you take
pedestal and light injection data with the same filename with .ped and .li extensions
respectively. First you have to load the pedonly.C file as above, then run the liwped.C
file with the filename with no extension as the argument, e.g. : .x ./liwped.C(“filename”).
That will analyze the file filename.ped to find the pedestal values to subtract from the
data in filename.li containing the light injection data. It will finish displaying a lego plot
of the light injection pulse height distributions for all 32 channels.

The program apddisplay.C can be used to display the hit pattern and event by event pulse
heights in the apd array. An example picture of a track in a 4x8 cell scintillator tracker is
shown in Figure 10. The color of the box and the text indicate the pulse height detected
in units of photoelectrons assuming APD gain of 100 and the standard readout board
conversion gain of 208e-/mV.

Figure 10 Sample track in a 4x8 array of scintillator strips arranged as a tracking
module.

1 MASDA reference information available on web at http://library.fnal.gov/archive/test-tm/2000/fermilab-
tm-2063.pdf. Additional references with more or less the same information are here:
NIM A 485 (2002) 661-675. "Design and performance of a low noise 128
channel ASIC preamplifier for readout of active matrix flat panel imaging arrays"
and
T. Zimmerman, The MASDA-X chip––a new multi-channel ASIC for readout of pixelated amorphous
silicon arrays, Fermilab technical note FERMILAB - TM-2063, 1998.
and
R. Yarema, et. al., “A Programmable, Low Noise, Multichannel ASIC For Readout of Pixelated
Amorphous Silicon Arrays,” presented at the 8th European Symposium of Radiation Detectors
June 14-17, 1998, S&loss Elmau, Germany. Submitted to NIM.

2 Details of the Array are found here http://usa.hamamatsu.com/assets/pdf/parts_S/S8550.pdf

3 This is Digi-key Part number AE1039-ND.

